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LE’ITER TO THE EDITOR 

The Gross-Neveu model: dynamical symmetry breaking at 
a Kosterlitz-Thouless phase transition 

Michael C Ogilviet 
Center for Theoretical Physics, Department of Physics and Astronomy, University of 
Maryland, College Park, Maryland 20742 

Received 1 October 1981 

Abstract. The Gross-Neveu model can be interpreted as the massive, scaling limit theory 
derived from a model which undergoes a Kosterlitz-Thouless phase transition. 

1. Introduction 

The Gross-Neveu model (Gross and Neveu 1974) is a (1 + 1)-dimensional field theory 
of interacting fermions, with Lagrangian density 

where g2 is a dimensionless coupling constant. This model is asymptotically free and 
exhibits dynamical symmetry breaking: although the fermions start out massless, they 
become massive due to the composite field X E l  acquiring a non-vanishing vacuum 
expectation value. This is an example of dimensional transmutation: the single 
parameter of the model, g2, is replaced by a single massive parameter, which can be 
taken to be the fermion mass. 

In this Letter I show that this phenomenon can be understood as originating from a 
Kosterlitz-Thouless phase transition (Kosterlitz and Thouless 1973) which occurs in a 
related two-parameter model which includes the Gross-Neveu model as a very special 
case. The Gross-Neveu model is the scaling limit of this other model. 

It has been known for some time that a one-parameter interacting field theory can 
be obtained from a two-parameter theory which undergoes a second-order phase 
transition. Suppose the two parameters are T and p, where T is dimensionless and p 
has dimensions of mass. Near a critical point T,, the physical masses behave like 
FIT - T,]”. If p is taken to infinity as T goes to T, in such a way that the physical masses 
stay fixed, a new theory, the scaling limit of the old theory, is obtained. For a lattice 
model, ~ - l  is the lattice spacing, and the new theory obtained is the continuum limit 
theory. 

In a Kosterlitz-Thouless phase transition, physical masses vanish much more 
quickly as T goes to T,. Typically (Kosterlitz 1974) the physical masses vanish as 

exp(-a/lT- T,I”‘). (1.2) 
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Obviously, it should be possible to construct a scaling limit theory from a theory which 
has a Kosterlitz-Thouless phase transition. My claim is that the Gross-Neveu model 
can be so obtained. The principal tools required to demonstrate this are the Bose form 
of the Gross-Neveu model (Witten 1978) and the analysis of the sine-Gordon model’s 
critical behaviour by Amit et a1 (1980). 

This result is consistent with the suggestion of McCoy and Wu (1979) that a novel 
field theory can be constructed using the infinite-order phase transition in the XYZ spin 
chain, which is equivalent to a lattice version of the Thirring model. The massive 
Thirring model is equivalent to the sine-Gordon model, which is the prototypical 
example of a field theory with a Kosterlitz-Thouless phase transition. Witten (1978) 
has shown that for N = 2, the Gross-Neveu model is equivalent to two decoupled 
sine-Gordon models. 

2. Bose form of the Gross-Neveu model 

The Bose form of the Gross-Neveu model has been discussed by Witten (1978). An 
interesting discussion of the group-theoretical aspects of this equivalence has been 
given by Shankar (1981). The fermion fields are replaced by N scalar fields q l ,  . . . , qN. 
The Bose form of the Lagrangian is 

LB =i(l + g 2 / 2 r )  (a,q~~)’+(g~m”/2.rr~) N,,, c o s ( 4 ~ ) ’ / ~ q ~ N ,  C O S ( ~ T ) ’ / ~ ~ Y ~  (2.1) 
i i # j  

The symbol N ,  indicates normal-ordering with respect to the arbitrary mass m. 
Although LB appears to depend on m, it does not, because 

mN, C O S ( ~ T ) ’ / ~ ~ Y ~  = M N ~  c o ~ ( 4 7 r ) ” ~ q ~ .  (2.2) 

It might be objected that the Gross-Neveu model is renormalisable, not super- 
renormalisable, and the normal-ordering in (2.1) is inadequate to render the theory 
finite. This is true, but misses the point. The coupling constant g2 is the bare coupling 
constant. Order by order, in an expansion about massless free-field theory, LGN and LB 
will give the same (bare) Green functions, which must be renormalised to be free of 
divergences. 

The factor (1 + g2/277) multiplying the kinetic part of LB is inconvenient; it would be 
nice to put it somewhere else. For a classical theory, this can be accomplished by a 
rescaling of the fields. For a quantum field theory this is problematic. In this case, the 
normal ordering of the cosine operators would not match the actual divergence of the 
operator. Therefore, it is best to remove the normal ordering, and then rescale 
the fields. Then LB is given by 

LB = 1 i(d,qo,)2 + 1 aoA2 COS P o q i  COS Pocpj. (2.3) 
i i # j  

The cut-off A replaces m, while a0 and Po are functions of g: 

f f o  = g 2 / 2 r 2  

P2O = 4 ~ / ( l +  g2/2.r). 

The origin of the phase transition is the marginality of the interaction part of the 
Lagrangian when @; = 477. The operator cos Popi has dimension zero in units of mass, 
but its anomalous dimension is P;/4.rr. If /3; < 47r, the product of two cosine operators 
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will be a relevant operator in the renormalisation group sense, and L B  will be 
super-renormalisable. If & = 47r, the anomalous dimension of this operator is two, so 
it is marginal, and LB is merely renormalisable. The Lagrangian L B  is non-renormalis- 
able if >4x .  Because the Gross-Neveu model is asymptotically free, the base 
coupling constant g goes to zero as the cut-off is removed, so p i  goes to the critical 
value, 47r, at the same time. 

It is easy to interpret this model as an equivalent problem in classical statistical 
mechanics. The generating functional 2 of Euclidean Green functions can be written 
as a functional integral, and expanded as a power series in cyo. At each order in cyo, the 
functional integral can be carried out, which recasts 2 into the form of a grand partition 
function of classical particles interacting via two-body potentials. In the simpler case of 
the sine-Gordon model, this equivalence yields a simple Coulomb gas of positive and 
negative charges. For this model, a Coulomb gas is again obtained, but with N different 
kinds of charges. Each charge interacts only with charges of its own kind, but each 
particle carries two different charges. The origin of the phase transition is the collapse 
of the particles into tightly bound neutral pairs as described by Kosterlitz and Thouless 
(1973). 

3. Perturbation theory 

In order to study the critical behaviour of the model defined by equation (2.8), I will 
employ the techniques of Amit et a1 (1980). In this section I calculate the one-particle- 
irreducible two-point function r(’) to second order in perturbation theory about the 
multicritical point cyo  = 0, = 47r. The two-point function is a diagonal N x N matrix, 
and all non-zero entries are equal. This is a consequence of the symmetry 

The details of the calculation are very similar to those for the sine-Gordon model. 

density L E  is given by 
It is convenient to work from now on in Euclidean space. The Euclidean Lagrangian 

(3.2) L E  = 1 ;(V~pi)’ -? 1 COS po~pj COS po~pj 
i i Z j  

where a = A-’. The graphical rules, shown in figure 1, generalise those of Kosterlitz 
(1975). 

The O(ao) contribution to r(*) is the first graph shown in figure 1 ; the index j must be 
summed from 1 to N, with i excluded. The five O(cy$) contributions are shown in figure 
2;  all indices except i must be summed from 1 to N. Graph (c) is ambiguous as drawn, 
but a particle of type i is both entering and emerging. It should be noted that there are 
graphs which could be included in (a ) ,  ( b ) ,  or (c), and likewise ( d )  or ( e ) ;  it is important 
not to overcount. 

As usual, r(’) can be written as 

(3.3) 

where Z is the one-particle-irreducible self-energy. As in Kosterlitz (1974), it is 
necessary to add extra mass terms to L E  in order to regulate the infrared divergences of 
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Figure 1. Basic graphical rules. 

Figure 2. O(cr2) contributions to r(') 

(3.4) 

the expansion: 

L ~ + L ~ + C  hm2cp:. 
i 

This will not affect the renormalisation group equations for p and a. 
The O(ao) contribution to Z, Z"), is 

P) = (cuop;J/a2))2(N - 1) 

J =exp[-p$A(x = O)]. (3.6) 

(3.5) 
where 

and A(x) is the Euclidean propagator. 

convenient to define 
In order to write down a simple form for the O((u;) contributions to Z, it is 

C(x)  =cosh /3;A(x) 

S(x) Ssinh p$A(x). 

(3.7a) 

(3 .7b )  
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The contributions of the five diagrams in figure 2 are given by 

X‘2’=(aOJ/a2)2p; d2x { 8 ( N -  1)2[C(~)-1]+4(N- l)[C(x)- 112 

x exp(ip - x)4(N - 1)2[S(x) -P$A(x)] 

-exp(ip .x)4(N - l)S(x)[C(x)- 11). (3.8) 

The critical value of & is determined by The divergences can be regulated by 
the replacement of x 2  by x2+a2.  The short distance behaviour (mIxl<< 1) of A(x) is 

A(x) = (-1/47r) ln[m21~12] (3.9) 
so 

z“) = 2 ( ~  - l)(ao~;/a’) exp[(~;/47r) ln(m2a2)1. (3.10) 

The critical value of 0;  is 47r. I define 

so = (&/47r) - 1 (3.11) 

It is necessary to find all divergences of I“’) to second-order in a double expansion in 

(3.12) 

As in the sine-Gordon model, the divergences in Z‘2’ can be catalogued by 

(3.13) 

for use as an expansion parameter. 

a. and So. This is easy for Z‘”: 

= a o 8 ~ ( N  - 1)(1+ s0)m2[ 1 + So ln(m2a2)]. 

examining only Z‘’)(p2 = 0) and d Z ( 2 ) / a p 2 1 p ~ = ~ .  The divergent part of I;‘2’(p2 = 0) is 
X (2) ( p  2 = 0) = -a;m287r2(N- 1)(N-2) ln(m2u2) 

while the other divergence is given by 

dZ(2)/dp2/p2=o= -a;8rZ(N - 1) ln(m2a2). (3.14) 

Combining these results, I find r(2) is given by 

r C 2 ) ( p 2 )  = p 2 +  m 2 + 8 r ( N -  l)aom2[1 +SO ln(m2a2)] 

- 87r2(N - 1)(N - 2)a ;m ln(m 2a 2, - 7r2a; (N - l)p2 ln(m 2u2)  (3.15) 

up to finite parts. 

4. The renormalisation group 

Two renormalisation constants, 2, and Z,, suffice to remove all divergences in r(?). 
Renormalised quantities are defined by 

0 (4.1) 

(4.3) 

rkN) = z N / 2  r ( N )  

a0 = z,a (4.2) 

& = Z ,  P 
m; = Z,’m2. (4.4) 

-1  2 

The only unusual feature is the renormalisation of P ; ;  see Kosterlitz (1974) for a 
discussion of this point. 
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The requirement that rk" be finite fixes 2, and 2,. To second order they are given 
by 

2, = 1-6  ln(m2a2)+.rr(N-2)a21n(m2a2) (4.5) 
Z,  = 1 + r 2 a 2 ( ~  - 1) ln(m2a2). (4.6) 

The renormalisation group p functions are defined in the usual way: 

0, = -aa (a In Z,/aa) 

= 2Sa - 2 r ( N  - 2 ) ~ '  (4.7) 
pa = a ( ~ S / ~ a ) = ( l + S ) a ( ~ l n Z , / ~ a )  

= 2.rr2(N - l)a2. (4.8) 
The renormalisation group flow is shown in figure 3. It has the characteristic 

hyperbolic shape associated with Kosterlitz-Thouless phase transitions. There are 
three regions. Region I describes the behaviour of the model when < 4 ~ :  this phase 
is massive and asymptotically free. In region I11 the model is non-renormalisable. The 
infrared flow of the renormalisation group trajectories leads into a line of infrared- 
stable fixed points. This phase is analogous to the low-temperature spin-wave phase of 
the XY model. 

t 

Figure 3. Renormalisation group flow. 

Note that the flow is not symmetric about S = 0, except in the case N = 2. This 
occurs because LB is not invariant under a + -a, unlike the sine-Gordon case. When 
N = 2, the flow equations (4.7) and (4.8) reduce to the symmetric sine-Gordon form 
because the N = 2 Gross-Neveu model is equivalent to two decoupled sine-Gordon 
models (Witten 1978). 

The separatrices of the flow diagram can be obtained by substituting a = mS into 
equations (4.7) and (4.8) and solving for m. The result is 

ml = -117 (4.9) 
and 

m+ = l/.rr(N - 1). (4.10) 

From equations (2.4) and (2.5), it can be seen that for the Gross-Neveu model, a and S 
are given to lowest order by 

a =g2/2.rrz (4.11) 

s = -g2/2.rr. (4.12) 
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Thus the Gross-Neveu model is described by the renormalisation group flow on the 
left-hand separatrix. In fact, substitution of (4.11) and (4.12) into (4.7) and (4.8) gives 

(4.14) 

which is the lowest-order Gross-Neveu model beta function. Thus we see that the 
Gross-Neveu model and its dynamical symmetry breaking are associated with a 
Kosterlitz-Thouless phase transition. It is easy to show that there is a phase transition 
as the left-hand separatrix is approached from the left-hand side. This proves the claim 
made at the beginning of this Letter. 

After this work was completed, I received a preprint from Girardello et a1 (1981) 
which studies the N = 2 Gross-Neveu model using its equivalence to two decoupled 
sine-Gordon models. Their conclusions are similar to mine, but are restricted to the 
case N = 2. 
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